
This is CS50.© 2018

Key Terms

• trust model
• backdoor

Overview
Downloading a piece of software from the Internet requires a substantial amount of
trust on part of the user. The user must trust that the piece of software that is being
downloaded doesn’t contain malicious code. In theory, any software downloaded onto
a computer could delete all of the files on that computer. Yet, we still trust that the
software we download is safe and secure. This is the basis of trust models.

Backdoors
To the right is an excerpt of a hypothetical login program
written in C, which checks a username and password
to determine whether a user's account credentials are
valid. In reality, login programs would probably compare
the user’s inputs against username and password values
stored in a database. Furthermore, these would most
likely be encrypted in some way and not just stored as
plain text. Still, we’ll use this simplified version for the
sake of example.

Notice that after performing the initial check for us-
ername and password combinations, the code offers
an additional way to gain access to the system (by
using the username "hacker" and the password "LOLi-
hackedyou"). This method of accessing a system through
an alternate means, one that differs from the way that
users are supposed to access a system, is known as a
backdoor.

In this case, any users who were to read the code of the login program would be able to identify the fact that
there's a backdoor into the system. However, users who download software usually won’t have the opportunity
to see the code of a program before it's compiled.

if ((strcmp(username, "rob") == 0 &&
 strcmp(password, "thisiscs50") == 0) ||
 (strcmp(username, "tommy") == 0 &&
 strcmp(password, "i<3javascript") == 0))
{
 printf("Success!! You now have access.\n");
}
else if (strcmp(username, "hacker") == 0 &&
 strcmp(password, "LOLihackedyou") == 0)
{
 printf("Hacked!! You now have access.\n");
}
else
{
 printf("Invalid login.\n");
}

Exploits in a Compiler
Even if a user sees a program's code before they download it and determines that there doesn't seem to be any
malicious code or backdoors in the code, that doesn't necessarily mean that the program itself is secure. Com-
pilers, the program that translates source code into object code, can also be the source of exploit.

There are a couple ways that compilers can be used to exploit users. A compiler could, for instance, be pro-
grammed to take a perfectly benign login program and inject code into it that creates a backdoor. Anyone who
looked at the source of the login program code itself wouldn't detect any signs of a backdoor. But if the source
code were compiled with the malicious compiler, then the resulting program would have the backdoor in it. Of
course, in this case, anyone who were to look at the source code of the compiler would see that there was code
in the compiler that injects malicious code into the login program.

Let’s take this one step further. Imagine that we wrote a compiler that injected malicious code into the compiler
itself (remember that compilers themselves need to be compiled). Then a hacker could theoretically take benign
source code for a compiler and turn it into a malicious compiler. In this case, even if the compiler source files and
the login program source files didn’t contain any malicious code or backdoors, compiling the source files could
still result in the injection of malicious code. 	

CS50 Trust Models

