
This is CS50.© 2018

Merge SortCS50
Key Terms

• merge sort
• array
• recursive
• pseudocode

Overview
Sorting algorithms like selection sort, insertion sort, and bubble sort all suffer from the
same general limitations and thus have the same worst-case runtime of O(n2). Merge
sort, on the other hand, is fundamentally different, leveraging recursion to “pass the
buck” of sorting, accomplishing a drastically superior runtime: O(n log n)!

Implementation
Merge sort works by breaking an array into sub arrays and merg-
ing the subarrays back in a recursive way. To understand how this
works, let’s take a look at the following pseudocode:
	
merge sort:	
	 if number of elements < 2
	 return
	 else
	 sort the right half
	 sort the left half
	 merge sorted halves

Using the lines above and the array on the left (containing these
numbers: 5 1 6 2 4 3), we are going to sort the left and right halves
of the elements and merge them together. Note that when run-
ning merge sort, we only need enough space to store two copies
of the array, despite the fact that the diagram on the left appears
to require more space. At this point, we have no way of sorting
the right or left halves, so we are going to recursively call the
merge sort function. Similarly, we are going to continue to do
this until we are left with all arrays of size 1. We’ll need to handle
running into an odd number of elements in a consistent way. Here,
we implemented our program such that the left side of the split
will have one more element than the right if the array has an odd
number of elements.

After the elements are broken down into arrays of size 1, we are
able to merge the sorted halves, since any array of size 1 is con-
sidered sorted. When we merge the two halves, we are removing
the smallest numbers from the subarrays and appending them to

the merged array, repeating until all elements of both subarrays are used up. (Note: The smallest elements will
always be at the beginning of the subarrays, so we only need to check the first elements in the respective sub-
arrays.) Since 6 was a single element array in the previous iteration, it does not need to be merged. We continue
to do this until all the right and left halves are sorted from the previous iteration. Upon the next iteration, when
we merge the arrays back into arrays of size 3, we need only look at the 0th index of each subarray to find the
smallest element of the newly-merged array. In this case, this would be 1 and 6 for the left half and 2 and 3 for
the right. Since 1 and 2 are the lowest numbers of their respective sides, they go into the 0th indices of the new-
ly-merged array. And we’ll continue to merge arrays in this way until the array is fully sorted.

Sorted Arrays
Like selection sort, merge sort has the same runtime in the best and worst case scenarios. Consider running
merge sort on an already sorted array: since our program would have no way of knowing that it had already
been sorted, it would have carry out the entire process the same way that it would with an unsorted array.

465 3

45

Step-by-step process for
merge sort

5 1 6 2 4 3

2 4 35 1 6

5 1 2 46 3

5 1 6 2 4 3

1 6 2 3

21

1 2 3 4 5 6

0 21

21021

543

0

0 1 0 0 01

